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ABSTRACT

This report presents a simplified, semi-theoretical model of
fractionaiion, suitable for meking interim estimates of degree of
fractionation and of radionuclide partition between local, inter-
mediete, and worldwide fallout. The principles set forth are applicable
to the treatment of air-, tower-, and surface-burst debris (in the
order of decreasing conf@dence) and to correcting fallout-prediction
systems for fractionation effects. The material provides the first
step necessary to illustrate theoretically the definition of contami-

nation level proposed in Part II of this series.




SUMMARY

Problemn
The effects of radionuclide fractionation severely complicate

the prediction of many properties of nuclear bomb debris.

Findings

A semi-theoretical model can be used in & relatively simple
manner to estimate both radionuclide fractionation and its effects
.on exposure dose rate. The model is recommended for illustrative
purposes, rule of thumb estimégtes, and as a stop-gap until either

better models or more extensive information becomes avallable.
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PREFACE

This series of reports. presents and discusses the effects of
radionuclide fractionation. in nuclear bomb Aebris. Part I (Ref. 3)
defined fractionation as "any alteration of radionuclide composition
cceurring between the time of detonation aend the time of radiochemical
analy: is which causes the dGebris sample to be nonrepresentative of
the detonation products taken as a whole." It showed how the radio-
nuclide compositions of fractionated samples could be correlated
empirically by logarithmic relations. Part II (Ref. 1) used these
relations as the Ptasis of a technical discussion of contamination
density as applied to fractionated nuclear debris. This part presents
a theoretical foundation for the observed logarithmic correlations
of Part I, It uses this as & »inplified mesns of e~iimeting frac-
tionation as a function of particle size and the partition of product
redionuclides among local, intermediate, and worldwide fallout. As
an interim prediction system it is applicable, with decreasing con-
fidence, to ailk-burst, tower-burst, and surface-burst debris. Part IV
will extend the calculations to show how fractionation-correlation
parameters can be used to estimate the exposure dose rate from nuclear
debris with various degrees of fractionation. It will gerve %o

illustrate the proposals made in Part II.
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INTRODUCTION

Part II in this series1 recomnended a definition of surface
density of fallout contamination which was realistically related to
the spatially variable radiochemical composition in fallout patterns.
In order to illustrate the principles presented in that report, one
needs o means of predicting the quantities to be used in the illus-
tration. One means of making such predictions is found in a model
proposed by C, F. Miller.2 However, Miller’s iodel is very complex,
it presents conceptual difficulties, it requires machine computation
for its employment, it needs input data which is presently unknown,
and it is in need of considerable, fundamental revision {c#, Ref,11).
There is a definite need for a simplified, interim model for pre-
dicting the effects of radionuvelide fractionation on radiation hazard
from fallout.

This report describes a conceptually simple, easily usable, semi-
theoretical model which is applicable to air, tower, and land-surface
burst debris. It shows the relation of the model to observed cor-
relations of fractionated debris and uses this relation to predict
radionuclide partition between lotal, intermediate, and worldwide

fallout.




In Part IV of this series, this model will form a basis for
illustrating calculations of exposure-dose rate according to the
newly defined surface density of contamination.

Familiarity with thé preceding reports of this seriesl?3 is pre-

requisite to understanding the material presented here.

THEORY

The m.del to be developed rests upon two principal assumptions.
The first is that the nuclear debris consists of macroscopically
homogeneous, spherical particles with a lognormal size-frequency dis-
tribution. The second is that the ultimate distribution of each mass
chain anong the particles is proportional to some power of the par-
ticle diametier. Additional assumptions will be required to apply
the model to typical situations.,

In this section we wiil first describve sne lognoru . flabridastion
and its pertincnt features., We will then apply these feasvres to
the interrelation of size, surface, and volume for & logncrmal distri-
bution of sphericel particles. Finally, the relation of these features
to fractionation is introduced by means of the second assumption. A
relationship between pairs of mass-chain ratios is thereby obtained

vhich is independent of particle size and in agreement with:obsexved

properties of fractionated debris.
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e P ST A T LR, G et .o

The Lognormal Distribution

The lognormal distribution is frzquently used to describe nuclear
debris. Stewarth derived a lognormal particle size-frequency distri-
bution from theoretical considerations, but his derivaticn is much less
realistic when applied to a land-surface burst then it is for an air

5

burst or tower burst. Anderson” has adopted a lognormal distribution
of radioactivity with particle size for use in his D-Model. Miller*
has proposed a lognormel distribution of mass with particle size for
use in his fractionation model for land-surface bursts., It will be
shown below that these proposals are in harmony. Although lognormal
distributions of various types are frequently observed in samples of
fallout, it remains to be established whether these distributions
epply to the total amount of debris produced.

A random variable is lognormally distributed if the logarithm of
the random variable is normally distributed., Thus, x is lognormally

distributed with mean ¢ eand variance cz if its frequency distribution

function is
-
d/\(u, 02) _ 1l  exp [; 1 [inx -p 2 (1)
d 1n x on\/2n L 2 o .

The notation is essentially that of Aitcheson and Brown.7 The quantity
é /\(u, 02)/d in x, vhen multiplieda by d ln x, gives the probebility

that a randomly chosen sample has a value of x whose logarithm lies

*C. F. Miller, Private Communicelio..




between 1ln x and in x ; d In x. Appendix A of this report gives
elementary background material con probability distributions and their
relation to size-frequency distributions.

An interesting and useful property of the lognormal distribution
is the following (cf. Ref. 6, Theorem 2.6). The kth-moment -distribution
of a /\distribution with mean p and veriance 02 is also a,/\distribution

but with mean p + ko2 and variance 02. Thus, it is easily verified

that
k 2 . 2
x auy,0%) ) .’Eka a Muy, o) (2)
d In x = "1 d In x

- 1/2 -
where L (51 52) and X, = exp W,. A useful form of Eq. 2 is

obtained by writing p, = i + ki"a' Then
k,-k
AN+ F, amx |y nxpr'll'»l*' o W\ =
M = (3)
d/\(u+k202, 02)/dlnx X [\ o )[

The Interrelation of Size, Surface, end Voiw:e Disl:l ¥ione

As a consequence of Eq. 2 above, if the frequency, the surface,
or the volume of a collection of spherical particles is lognormally
distributed with respect to the particle size, the other two quantities
are also lognormally distributed with respect to the particle size, For
exemple, let x represent the particle diameter and let its normalized

frequency distribution function be d /\(un, 02) . If N is the total

d ln x
nunber of particles and S the total surtace of the particles, the
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distribution of the surface with respect 1o X is

2 2 2 -
a2 n A, o) = wx N a Ny, o) ()

N

d In x d n x
Here x_ = X_ €Xp (202) so X__ = X exp (02)
Zs  ~n ’ Sns | tm :

since a /\ (us, 02)/ d 1n x is normalized, the total surface is

g= W x°
ns

. (5)

Similarly, the aistribution of volume with x is given by

3 . 2 3 T
 x° N d/\.(l-“, ¢°) _ ﬂ;_c“v R ii/\(uv, o ). (6)
6 d ln x 6 d ln x

Now X = X eXp (302) and the total volume is

3 ,,
V=nNx. ()
=7 Zov (7v)

The total mass of the particles is
M= PV ’ (8)
where p is the density. The mass is obviously distributed like
the volume since the particles are homogeneous, and. the mean of the
mass distribution P equals ) and consequently X = X
An importent quantity for our purposes will be the ratic of the

fraction of the total surface to the fraction of the total volume in
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particles of fallnut of diameter x according to »

a given particle-size increment gs a function of x. From Eq. 3 above,
this ratioc is
a /\(us, 02)/d 1n x

a /\(uv, 02)/d in x

B,V =

En exp (56°/2)

. X ) ! ,/
N Esv]x (9a)
= 6V/sx (9b)

According to Eq. 9a, To v is unity when x is equal to the geometric
b

mean of x_ and x_.
“z ~v

RELATION OF THE LOGNORMAL DISTRIBUTION TO FRACTIONATION
Congider now two mass chains i and J which ere distributed among
ky k
ond x 9 respec-
tively, the fallout particles themselves nuvaag 7y »~-~ies hleh are
lognormal in x. The ratio of the fraction cf mass chain i to the

fraction of mass chain J in particles of size x is found from Eq. 3

to be
a N+ x, &% )/anx

a A, + &, ®, ¢°)/d 1n x

i, *©

}
!
=]

X, - k
X k, + k, J 1
el (M7 Xy 2
S

-

S




Two ratios for two pdirs of mass cheins can be related by eliminating

Zn/x from their respective equations:

1/(k, = k) ! (k- k) l 2
i . + H
r J exp| -5 kj @l =y VW e - k,*k o
i,J \ 3 . u,v i_ | -
or
Ky &y 2
in Ty,y " ey in Ty, v + (kj - ki) ;(ki + kJ -k - kv)o /2 (11)

This equation indicates a linear relationship between the logarithms of
mass-chain ratios which is indenendent of particle size. Linear relation-

ships tetween logarithms of mass-chain ratios have in fact been observed.3

APPLICATION OF MODEL TO LAND SURFACE BURSTS

We will now illustrate the: foregoing model k¥ applying it to some
land-surface fallout distributions currently in use at NiDL. We will
compare these, first according)to their physical properties, then, with
the help of some sdditional assumptions, according to their predicted
radiochemical properties. We will be particularly concerned with the
variation of fractionation with particle size and with the partition
of radionuclides among local, intermediuive, and worldwide fallout.

The Distributions

Three lognormal distributions have teen used at NRDL to descirilte

fallout:




The N-61 distribution is used for surfzce bursts on Nevads soil
regerdless of yield. According to this distribution, helf of the gross
activity in the nuclear clouwd is in particles with éiareters of X100 u or

ax
less end 1 % is in particles with dismeters of 10 u or greater,

o

The C-61 distribution is used for surface bursts on corsl surfaces.

03

Tt ig elso yield-inverizpt. According to this distribution, ha2lf cof the
gross ectivity is in pariicles with diamefers of 100 it or iess end 1 % is
in particles with diameters of 5000 p or greater.

The distribution proposed by Miller6 contains half of the mass
in particles with diemeters of 100 u or less ard 0.% % of the mess
in particles with diameters o?f 10& g or more (1 ‘ﬁ in varticles of dismeter
5600 1 or greater).

Tn order %o illustrate the dependence of verious distribution
properties on the mean and verience, we will treat the X-61 end C-61
distributions as though they epplied to mass (or vciuxe, since the per-

3 02 tu goess z2o by Tomparison

4

ticles are sssured homcgenecus) imstes
of the three distributions on this basis will illustrate the sensitivity
to the choice of variance. To illustrate the sensitivity to the choice
of meen, we will use two @istributions with thé seme variance as that
proposed by Miller, Yut with mass-model particle sizes of 50 and 200 .
YWe will desigpate these distributions M_, and M_ ., respectively, and the

originel Miller distribution by MlOO'
Table 1 summarizes some important statistical and physicsl grupertins

of these distributions, together with the equations involved in their

8




Teble 1

Properties of Various Distributions, Illustrating Their
Sensitivity to Hesn ané Variance

Quantity C-61 _1-_6_{ e %100 Moo
Variance (Dimensionless)

o, ‘ 1.682 1.980 1.736 1.736 1,736

o 2.829 2.919 3,015 3,015 3.015
Modal Diameters (u)

X, 100 100 50 100 200
x =x em () 597 1.986 2.hs52 hoook  9.809
x = x exp (-30°) 2.0ux1072 7.81x007 5.87x1073  1.17x10°2  2,35x10"2
X, = V’E 24,3 1h,1 1.1 22,1 Lk, 3
Neans (Dimepsionless)
b, =1nx 4,605 4,605 3.912 14,605 5,298
e = 1n x 1.776 0.686 0.897 1.590 2,283
w, = Inx -3.876 ~7.154 -5.137 -4, khg -3.75L

Physicel Properties
o=l
SV = 6/x_ (™)

0.247 0.426 0.541 0.271 0.135
NV = 6/x x 3 (u3)
0.655 87.5 12,0 1.51 0,287
Fractiong of Mass or Volume in Particle-Size hunges
0-25 u 0.205 0.242 0.345 0.212 0,115
.25-50 @ 0.135 0.121 0.155 0.133 0.097
>50 u 0.660 0.637 0. 500 0.655 0.788
Frections of Surface in Particle-Size Rangee
0-25 1 0.805 0.900 0.910 0.826 0.705
25-50 1 0.093 0.048 0.049 0.084 0.121
>50 @ 0.102 0.052 0.051 0.090 0.17k

Fraction of Surface/Fraction of Volume (rg v) for Particle-Size Ranges
Sy

0-25 | 3.93 3.72 2,64 3.9 6.13
25-50 0.689 0.397 0.316 2.632 1,25
>50 p 0.155 0.082 0

,102 0.137 0.221




calculation. Figure 1 shows the Mlvo distribution in differential form
(frequency function) and Fig. 2 shows it in integral form (the distribution
function).

We will now apply the surface-to-volume ratio to the estimation of
fractionation with particle size, and will use the fractions of surface
and volume in various particle-size groups to éstimate the partition of

individual redionuclides among local, intermedliate and worldwide fallout.

Predicted Radiochemical Composition vs Particle Size

In order to apply these considerations to the estimation of radio-
chemical properties from a land-surface burst, two additional essumptions
must now be nade to obtain k values. The first is that the mass-95 chain

is distributed like the volume k95 = 3),and the second is that the mass-89

chain is distributed like the surface(ke9 = 2)- This allows r89 95 to be
’

equated to T v and calculated as a function.of particle size from Eg. 9.
H

The valves of To v integrated over size incremenis are teatmlated in
H

Table 1.

Empirical correlations of radionuclide ratios have been obtained in

the form3

log,, Ty, 89 = 8 + b, log, %9589 (12)

or
log, Ty g5 B + ‘l'bi) log,, Y89, 95 (13)

where ay and bi are regression coefflcierts.
Comparing Eq. 13 with Eq. 11 in view of the above assumpi;ions,
J=v=05 ky = k,=3 u= 89, k, = 2. Equation 11 becomes

10
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, (3 - k,jx, -2) o
log r = (3 - k,) log r, + i3 .
Therefore
b, =k, -2 (1)
a; = (3 - &)k, -2) o*/h.606
=, (1-1) o2/1.606 (15)

The evaluation of 'bi by the radiochemical snzlysis of fallout

samples or its estimate by the method described in Ref. 3, allows
the radionuclide composition to be estimated as a function of particle

size. If o i\ known, a, can also be calculated. For a given distri-

i
bution, ay would have a maximum velue for e mess chain with bi equal

to 1/2. In such a case

a .= 02/18.1&

max

Predicted Partition of Radionuciides fmong Liocal,
Intermediate and Worldwide Fallout

The assumptions used in the preceding paregraph (viz., k89 = 2, k95 =3)
also allow estimates of the partition of various radionuclides among
local, intermediste, and worldwide fallout. For this purpose we first
define local fallout as consisting of all particles with diameters of
50 4 or more, intermediate fallout s« particles with diameters ranging
from 25 to 50 w, and worldwide fallout as particles with dlameters: of

254p or less., The fraction of the wai.-y5 chain in any of these portions




is then equal to the fraction of the total particle volume in that por-
tion, as shown in Teble 1. The same is true for any other quasi-
refractory mass chain (i.e., one. for which bi?# 1).

The fraction of the mass-89 chain in eny portion is equal to the
fraction of tre surface lying in thet portion. Values for the three
ranges cited are shown in Table 1. The same is true for any other
nuclide for which bi = 0,

The fraction of intermediately behaving chains can -be estimated

by calculating their modal volume values as in Eq. 2:
[ 2
X, = X €Xp l-(bi -1) ¢ ] (16)

From what has preceded it 1s clear that the variance for eech such
distribution will be the same as the varience for any geometric par-
ticle property for that distribution. Curves can then be plotted to
yleld the fraction in any group according to the value of bi‘ This
has bcen done for™ the MlOO distrivution, and lhe resai. i~ ghiom in
Fig. 3. The values of 'bi for some mass chains, as determincd from
Ref. 3, are indicated on the curve. That of Pu239 is estimated.

APPLICATION OF MODEL TO AIRBURSTS

As mentioned above, Stewart's treatment of nuclear debris forme-
tion is more realistic for air bursts than for land surface bursts.
His calculations epply to a device composed of 1000 kg of Fe and, as

can be shown from the date he uses, 2 yield of 10 kt. The total




yield-to-mass ratio is therefore about 101* (Ref. 4). For this he cal-

culates a modal radius of about 10"2 ¢ and a particle-size frequency

function

d/\ = 1 exp [- -32-' (n x - 9)2] . (17)

dlnx—ﬁ |

Stewart's variance is arbitrarily and -perpetually unity. His valuve of

x is
-—11
1/2
x = 'B 1\‘o To 2k
“n Kn smA (18)
where
Vyp = molecular volume in the liquid phase
No = initial number of atoms per wnit volume in the fireball

T = absolute temperature of fireball at the time of condensation

K =1 k‘l‘/9n 3 X 10'9, T = absolute temperature,]) = air viscosity

n = concentration of condensatiop maiizl zn *he tivsball

k = Boltzmamn's constant

m = molecular mass of iron

A = 7500° K

The particle size-frequency data available for air burst debris is
not reliable below a value for x of about 5 . The number of particles
above 5 | represents only a small fraction of the whole, but data available

are in agreement with a lognormel distribution.7
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The assumptions of the previous section, namely, that the mans-95
chain is distributed among the particles in proportion to their volume
and the mass-89 chain is distributed according to surface, are also more
realistic when applied to air bursts because the debris remains in contact
lcnger with the condensing material. The fect that fractionated samples

of air burst debris correlate logarithmically7

is also in agreement with a
lognormal distiibution, as explained above. Therefore, the present model
can be used also in estimating fractionation for air burst debris. However,
certain precautions should be indicated. Thus, Stewart's theory wes
developed for bursts of low yield with condensation times of the order of
10 sec. or less. No theory for longer periods has been found. However,
two modifications cen be made to Stewart's formula which will meke it more
realistic and more applicable to bursts of higher yield and lower mass.

The first modification concerns putting & lower limit on the particle
size. With higher yleld-to-mass ratios, smaller particles in greater
abundeace are to be expected. CObviously, iheie 15 & il.wil., . u dust-free
atmosphere, it would be initially the molecular diemeter. Tropospheric
aerosols have a lower limit of about 8 x 1073 p diameter due to the coagula-
tion of smaller particles.8 Similar mechanisms can te expected to eventually
establish a lower limit of alr-burst debris particle size. In a real
environment, the limit would be approximately the modal size of the dust
particles. In either case, we can call this limit X, and shift coordinates

in such & manner that the distribution “aw does not result in smailer

particles.

1k




The second modification concerns the verietion oé X, With the
device's ratio of mass to total yield M/%. The value of N, will
vﬁry as M/W. Neglecting the effect of M/W on the o£her parameters
leads to a direct proportion between x and M/W, From Stevart's

calculations, with M/W dimensionless,
x,® 10 M/W (microns) .

Introducing this and theé shift in abscissa into Eq. 17 gives

a/\ 1 | [x-x e
Tnx - expi-3 | —2o_ 19)
[E e 1

Figure 4 shows some differential graphs of this function with X, = lou i

for different mass-to-yield ratios. A thousand-pound device weight is
assumed. Integral curves sre shown in Fig, 5.

The validity of these considerations end the development of more
exact equations are subjects that require further investigation and

lie beyond the scope of the present report.

APPLICATION OF MODEL TO TOWER BURSTS

Stewart considers Eqs, 17 and 18 applicable to tower bursts and
illustrates the application for e tist of the same yield in which
25 tons of steel tower are vaporized. For this situation he calculates

x, = 0,24, (Our approximate cquatiun would give C.25 p). Applying

15




the assunptions set forth above to Stewart's tower burst gives the

integral curves shown in Fig., 6. As shown by the figure; the particle

size of unit rg value hias decreased from the value of x shown
9,95 =g,V

in Table 1 to a value of 2.5 . According to this treatment, therefore,

& particle from a tower burst should be more depleted in Sr89 than a

particle of the seme size from a land-surface burst.
DISCUSSION

This section attempts to point out, with equal emphasis, both the
defects and the merit of the present model. Although the model is a
stop-gap, whose raison g;§§£g lies more in necessity then in intrinsic
worth, it will be shown that its resemblance to reslity is sufficient
to justify its use for illustrations, rule of thumb calculations, and
estimotes made in the absence of reliable information.

The principal assumptions involved in tins deveavp.2znt wad applica-
tion have been (1) a lognoxmally distributed group of homogeneous,
spherical particles, (2) a distribution of mass-95 chain among the par-
ticles in proportion to the volume, and (3) a distribution of the mass-89
chain among the particles in proportion to their surface. None of these
assumptions is new, and only the flret is popular. The last two can be
easily modified to conform to other powers of the diameter, should this
gppear desirodle. In this section we will discuss the validity of each

assumption in turr and then compare the present model with the Miller

15




model, Finelly, the extension of the model to other burst types
(water surface) will be discussed and the unifying power of the model

will be explained.

Vglidity of the Lognormal Distribution

The case for lognormel particle-size distributions has already been
discussed, but it seems appropriate to summarize it here. Stewartts
prediction of lognormal distributions for nuclear debris is most validly

_applied to air bursts and least to land-surface hursts; The meager data
availab.e on air-burst debris is not valid helow diameters of 5 i, but
date above this size can ve fitted with a lognormel form and reasonable
parameters obtained., Therefore, the data available support this kind
of distribution but are not sufficient to substantiate it. In air bursts,
the particles are extremely heterogeneous and in land-surface bursts
they are more so. The properties observed must be considered as an
average, and a theory that can predict the average does well,

In fallout samples from lend-surisce burste, aun, Hiads oF distri-
butions have been observed, but the lognormal activity-particle size
distribution is as good an approximation to the observations as any.

It must be emphasized that these samples have all been biased, not only
by the sampling device itself, but also by the fallout transport process.
Thus, samples collected close to ground zero were depleted in small
particles and those collected at greater distances were successively

depleted in large particles. . No reprcsentative sample of pérticles fiom

17




B ldaond-swr¥oce burst has 2ver bexn pblained, and probebly nonc over will
be. Techminues of mnelyzing fellout debe, nouv teing gpplied =. this
Ieborotory, mey lead toc more reflined esiimales of the indtiel perticie-
=ize distribubion.

Neldgity of dhe x3 Jishribution of the Mess-95 Lhain and the ‘xz

Tigtribution oT the Mass-89 Ohein

The mssumpition has been made thet fhe wuss-95 chain Tisicibutes
Jised fhroughout the $ellout perticles eceoxfing o $he tibe of their
diemeders,  In She cease ol sdr-burst debris, this seems to e = reespon-
able assumpiion., Alr-burst dshriz hes been Tound to be very hetere
geneous With xegard to colorn, specific actinvity, densdity, Gecay charae-
teristics, mnd macroscopic composifdion, and mo xeltationship emong “these
wropertzies has dbeen dgtermined. The activity of dndivitued particies
appenys to weny Epproxinotely @ar the wibe of the diemeier Tor Jerge
warticles, mnd waries progressively more litke the sguare of the dismete-
a5 the nerticle size 'ﬁ.&':rxm.aMs‘fc Thire Tsheviir it inonelibetive opree-
ment with €he bihavior expecred from the present moidel.

With regerd £o dand-purface bursts, two principel kinds of Dar-

10 Dne kind ip smphexrical, Iractionsied,

+irYkes have been observed.
ol high specifre pobivity, mnd the pcbivity i distributed more or less
xegularly throughout the wvelume. The cther kind is -angulern, less frec-
+ionated, of much lower specific menivity, and dthe wotiviby is voncen-
‘brated on itz Burface. Although the lmbier is numernus, the Tormer

wokes the lorpger contxritution to the vaddologicel Tdeld mnd vontzinr

*Imon Leventhal, pudvote vommunization
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the larger fraction of the mass-95 chain. The former kind eppears to be
comprised of particles that werc completely melted and perheps partially
veporized., The larger of these presumebly fell svay from the nuclear 4
cloud while the mess-89 chain was predominantly in the uncondensible

Kr form. The large, irregular particles are apparently formed by the
indiscriminate condensation of vapors on cold particle surfaces or by

the scavenging of small, condensed particles. Fractionation was observed
to cause the quantivy of the mass-89 chain carried by a particle to be
indeps adent of the perticle type, by counteracting the increased activity

of regular particles wiih Sr89

depletion,

A further piece of information on the validity of the distributions
chosen for the mass-95 and mass-89 chains has recently appeared in a
report by J. H, Normen and W. E. Bell.ll On the basils of their studies
of Cs vaporization from, and condensation on, silicete melts of varying
compositions, these authors conclude: "Those elements that exhibit
relatively low vapor pressures wiis condems uat. ™ ~ut poriicles at
high tcmperatures where rates of diffusion are relatively high....

It is expected that these elements will readily diffuse into fallout
porticles and will become feirly uniformly distributed. On the other
hand, clements that exhibit relatively high vepor pressures will con-
dense onto fallout particles et low temperatures, where rates of diffusion

are lew. It is expected that these elements will be retaincd on or near

the surface of the particle."
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It therefore appears thet, in the absence of agglomeration, these

gre reasonable distributions to expect, but that further study is re-

quired to take agglomeration effects into sccount.

Comparison with the Miller Model

The Miller model and the present one have certain similarities.
Both adopt & lognormal mass vs. particle-size distribution and, if the
particles are considered to be completely melted, both will predict
that refractorily behaving mass-chains are distributed among the par-
ticles in proportion to the cube of the diameter.

The Miller model has the adventages of accounting for particles
which leave the cloud before the mass-89 chain has condensed and of
being able to handle partially melted particies. This is good with
regard to the prediction of refractorily behaving cheins, but bad with
regard to the prediction of volatilely behaving chains. Thus, the
closest that one comes to accounting Yor the mass-8% cusil coneilvuted
by unfractionated, irregular particles is to approximate them with
partially melted spherical particles depleted in Sr89.

The present model tends to correct this defect. Whether the extent
of correction is so unrealistically large that it 1s tetter omitted
remains to be seen.

Unitive Power of the Present Model

The applicability of the present undel to air, tower, and lund-

surface bursts is a point in its favor. It has been pointed out12 that

20




the condensation processes occurring when a nuclear device is detonated
on the surface of a body of fresh water can be approximeted by those of
an air burst occurring in the presence of vaporized water. The present
model should provide orientation for considering this type of situation.
In the case of an ocean-surfacc burst, the situation is similer but
complicated by the presence of vaporized sea salts.

All these situations will recelve consideration in due course.

Avplicetion to Models for Fallout Transport

There exist many models for calculating the transport of radio-
active fallout from the nuclear cloud to the ground. Many of these
consider the debris to be divided into particles of different sizes.
By means of the model described here, the degree of fractionation can
be estimated for any particle-size range. The next report of this
series will illustrate the estimation of exposure dose-rate as a func-
tion of time and degree of fractionation. With calculations of this
type, the contribution to the Jose-rate Irowm each pa. ¥ wle clasz can
be estimated and fractionation accounted fox.

Resemblance of Mcodel Predictions to Observasions of Nuclear Debris

Without involving classified material, the resemblance of model
prediction to fallout observations may be summarized as follows:

(1) The model is in agreement with observed correlations of radio-
nuclide composition for fractionated debris in both air and surface bursts.

(2) 'The model gives the -observe’ trend in radionuclide compositic:
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with particle size (greater enrichment in volatile-behaving chains with
decreasing particle diameter) in both air snd surface bursts.

(3) In a 2-kt, near-surface burst, the particle diemeter vor which
r89’95 = 1 was observed to be 27 + L7 R, in good agresment with the
values of Xs,v shown in Table 1. However, particles greater than
several hundred microns were found to be lcss depleted in volatilely
behaving chains than the model predicts. Thls departure may te due
to the incorporation of smaller, more volatile-rich particles on these
larger purticles by impaction. Evidence of impaction also appeared
in microscopic and autoradiographic examinations of this debris.

(4) The model predicts reasonable partition between local and
vorldwide fallout,

(5) The model offers a significant improvement uver the use of

unfractionated radionuclide compositions.
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APPENDIX A
RELATION OF SIZE-FREQUENCY DISTRIBUTIONS TO
PROBABILITY DISTRIBUTIONS
If wé iet N{a,b) be the number of particles in a given sample whose
diemetérs x satisfy the inequality a < x < b, then N{0,00} is the total
number of particles in the sample and N{a,b}/N{C,c®) = P{e,b}, the
probadbility that a randomly chosen particle has a diameter x such that
a <x<Db. The size frequency function p(x) is releted to this probe-
bility by
P(a,b) = f;’ p(x)ax
(A1)
% = p(x) -
If it is desired to approximate the size-frequency distribution with a
normal distribution, thin is cuslily accumplizied vith the standard normal

distribution function

exp (—t2/2) (A2)

by making the equality

from which
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Thus, for a normal distribution:

p(x) = —2= exp [»%—

For a lognormsl distribution

In x-
t = XE
a1
dx = xo ?
1 1 [1n x-pt) 7]
Yy = exp '2 o b
V’Bﬂ
<
1 L/ ln x-p
p (x) = exp -—(——-”.
xo'\/2n [2 ¢
_ d/‘\fp.z 022
- ax

Note this is not the d A /d 1n x as in Equation (1).

(k)

(as)

The lognormal distribution has been treated at 'lengbh by seversl

authors (Al-A3) besides Aitcheson and Erown, but it will be helpful

to summarize some of its essentlel » < perties here,

(93]
~

A rsndom variable




is distributed lognormally if the logarithm of the variable is dis-
tributed normally. Such a variable can only have positive values.
The value of the varieble x for vhich the frequency is a maxirum is

the modal value X and its natural logarithm
Inx =g

is the mean value of the ln x. We will call the values of x for

which t = + 1 by x , and x_

1

Vax

The standard deviation o is given by ln Xy

At these values, y falls to exp (-%) of

1 1

, -4 1n y/dt is unity, and dzy/dt2 = 0.

its maximum value

~-Inx=1Inx-1n X_y
the difference between the values of ln x at the axis of symmetry and
the points of inflection. Thus t represents the departure, in ¢ units,

of In x from its mean ‘value.

Finally,

p(x) ax = —=— exp [—%

]
lav]
~—

&
=
+
)

d ln x
is also the probability that 1ln x lies between 1ln x and In x + d 1ln x.
Figure 7 illustrates several presentations of the same distribution
and their relation to one another. Figure TA is & logaritnmic-probability
presentrtion for Y when x = 1 and X4y = l/x_l = 2, fThe linear-probvability

presentation of the normel distridufi... obtainéd by letting x' = ln x




is shown in Figure 73. Here, x = O, Xy = <X = 0= 0.693. This is
converted to the more familiar freguency function in Figure 7C and
to the less familiar Gaussian plot {Ah). These in turn are converted

back to the logarithmic form in Figure 7D.
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